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Abstract— The Mathematical Absorber Reflection Suppression 
(MARS) technique has been used to identify and then supress 
effects of spurious scattering within: spherical, cylindrical, and 
planar near-field antenna measurement systems, compact 
antenna test ranges (CATRs), and far-field measurement 
facilities for some time now.  The recent development of a 
general purpose three-dimensional computational 
electromagnetic model of a spherical antenna test system has 
enabled the MARS measurement and post-processing technique 
to be further investigated.  This paper provides an overview of 
the far-field MARS technique and presents an introduction to 
the computational electromagnetic range model.  Preliminary 
results of computational electromagnetic range simulations that 
replicate typical MARS measurement configurations are 
presented and discussed which, for the first time, confirm 
through simulation many of the observations that have 
previously been noted using purely empirical techniques. 

I. INTRODUCTION TO FAR-FIELD MARS 

Reflections in antenna test ranges can often be the largest 
source of measurement error within the error budget of a 
given facility [1] with direct collimating ranges being perhaps 
the most susceptible to these contaminants [2].  Considerable 
attention has been paid to range multipath suppression in the 
open literature with significant effort, ingenuity and 
resourcefulness having been devoted to quantifying and 
subsequently correcting multi-path contaminated 
measurements by means of: hardware or software time-gating, 
background subtraction, complex plane circular least squares 
fitting, and signal encoding based techniques.  However, until 
very recently, the frequency domain mode orthogonalisation 
and filtering techniques that have proved so overwhelmingly 
successful in near-field measurements (i.e. spherical [3, 4, 5, 
6], cylindrical [7, 8, 9], and planar [10, 11, 12], and more 
generally [13]) have not been applied to one-dimensional far-
field measurements.  Far-field MARS (F-MARS) [14, 15] is 
very closely related to the well-established spherical and 
cylindrical MARS implementations with processed results 
being obtained from only a single one-dimensional far-field 
pattern cut.  This is significant, as one of the most appealing 
attributes of the far-field methodology has been its ability to 
provide a single antenna pattern cut, thereby minimising the 
required measurement time and complexity.  However, one of 

the more widely acknowledged shortcomings of making direct 
far-field antenna pattern measurements is that range multipath 
can degrade the accuracy of the measurement results [2].  This 
is especially true of outdoor far-field measurements where, in 
general, far less control is had over the test environment.  The 
F-MARS measurement and post-processing technique was 
specifically conceived for use with far-field ranges to combat 
exactly this issue where only one-dimensional single 
frequency far-field antenna pattern data is acquired. 

F-MARS is entirely generic in nature, and can be applied to 
a variety of different antenna types with no a priori 
assumptions being made about the excitation or distribution of 
currents sources.  Previously [14, 15], empirical test 
campaigns have been used to verify that the F-MARS 
technique is able to supress spurious range reflections whilst 
preserving the integrity of the underlying antenna pattern 
function.  This verification has been accomplished by 
establishing the degree of repeatability between successive F-
MARS processed measurements where only a single 
parametric change had been introduced into the experimental 
configuration.  That parametric change comprised the 
installation of a single large scattering object into the test 
environment.  During that investigation it was found that, like 
other implementations of the MARS technique, displacing the 
antenna under test (AUT) away from the centre of rotation 
was crucial to the success of the technique and rules for 
optimising this offset were developed.  The purpose of this 
paper is to present the results of a computational 
electromagnetic simulation that attempted to recreate the 
previously used experimental configuration and procedure in 
order to obtain further independent verification of the F-
MARS technique.  Whilst a detailed description of the 
theoretical basis and practical verification of F-MARS can be 
found presented in the open literature [14, 15] and is not the 
primary subject of this paper, the following summary of the F-
MARS measurement and data post-processing may be of 
some utility to the reader in understanding the chosen 
simulation configuration described herein: 
1. Take a direct acquisition of the one-dimensional far 

electric field amplitude and phase pattern function with the 



AUT offset from the origin (a single far-field component is 
sufficient). 

2. Apply a differential phase change to mathematically 
translate the AUT to the origin of the measurement 
coordinate system. 

3. Obtain the translated mode coefficients of the AUT for an 
AUT conceptually located at the origin of the 
measurement coordinate system using the inverse fast 
Fourier transform (FFT). 

4. Apply band-pass mode filtering function to suppress 
unwanted higher order cylindrical mode coefficients 
(CMC) where the properties of the filter function are 
determined from the physical size of the AUT and the free 
space propagation number. 

5. Compute the complete far electric field pattern from the 
filtered mode coefficients using the FFT to obtain the 
MARS filtered antenna pattern function. 

Here, since these transforms and their inverse operations 
can be evaluated using the one dimensional fast Fourier 
transform (FFT) algorithm, this insures that F-MARS 
processing is very efficient in terms of computational effort 
and resources. 

The development of general-purpose tools for the 
simulation of near-field or far-field antenna measurements is 
of interest for several reasons.  Such a tool would enable one 
to: plan and optimise a measurement campaign before 
committing valuable facility time or resources, or to assess 
individual error terms within the facility level error budget 
and to verify correction algorithms.  In this instance it was the 
impact of spurious range multipath that was being assessed 
together with the effectiveness of correction techniques.  In 
general, it is difficult to obtain closed form functional 
solutions for the electromagnetic (EM) field at an arbitrary 
point in space from knowledge of the tangential electric 
and/or tangential magnetic fields over a closed surface for 
anything but the simplest of configurations.  This is especially 
true when the closed surface is not coincident with the 
aperture of the radiating structure, as is the case for near-field, 
or MARS type antenna measurements.  As such, recourse to 
alternative, typically numerical based techniques becomes 
unavoidable. 

In essence, any antenna measurement can be simulated by 
evaluating the complex coupling coefficient between the AUT 
and the field probe (or remote source antenna).  This must be 
accomplished for each point within the simulated acquisition 
surface, for each sampled polarisation, and for each frequency 
at which the measurement is to be taken.  In principle then, it 
would be possible to obtain the mutual coupling coefficient, 
S21, between a given mode in the waveguide port in the AUT 
and a given mode in the waveguide port on the scanning probe 
(or remote source antenna) from a three-dimensional 
computational electromagnetic (CEM) full wave solver.  This 
approach would have the advantage of, potentially, 
introducing the least number of assumptions and 
approximations and therefore could in principle yield the most 
accurate predictions.  Unfortunately, at the present time, 
although many solvers are available employing say, the finite 

difference time domain (FDTD) method, the finite element 
method (FEM), the method of moments (MoM), etc., these are 
generally considered inappropriate for simulating problem 
spaces as electrically large as those needed to enclose a 
complete near- or far-field measurement system, especially 
when that model extends to include positioners, absorber, 
cranes, lights, and so forth.  This limitation is merely a 
consequence of the extended processing times and the large 
amounts of computer resources that are typically required.  
Hence, alternative, perhaps less generally applicable, but more 
computationally efficient techniques are required.  One 
possible strategy for accomplishing this is introduced in the 
following section. 

II. OVERVIEW OF SIMULATION TECHNIQUE 

The computational electromagnetic simulation of a direct 
far-field range measurement was based on physical optics, and 
specifically on the Kirchhoff-Huygens Principle which 
enables fields specified over one closed surface to be 
propagated to another point in space.  The Kirchhoff–
Huygens’ principle is a powerful technique for determining 
the field in a source free region outside a closed surface from 
knowledge of the electromagnetic field distributed across that 
surface.  This method is applicable to arbitrary shaped 
surfaces over which both the electric and magnetic fields are 
known.  The form of the Huygens principle which is used can 
be derived from the integral form of the Stratton Chu 
equations [16] and which represents an integral form of 
Maxwell’s equations.  When expressed mathematically, the 
electric field at a point P radiated by a closed, but arbitrary, 
Huygens’ surface S is, 
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Here, E and H are the electric and magnetic fields 
respectively and are specified over the enclosing surface, and 
ψ denotes the first order spherical function, 
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Here r’ is the displacement of the field point from the 
elemental source and is related to the co-ordinates of the 
elemental Huygens source r0 and the co-ordinates of the field 
point r through, 

 
0rrr −=′  (3) 

ω is the angular frequency and is related to the frequency f 
by ω = 2πf, k0 is the free space propagation constant and is 
related to the wavelength by k0 = 2π/λ, n is the outward 
pointing unit normal and, respectively, ε and µ are the 
permittivity and permeability of the medium through which 
the fields are propagating.  In general these are complex 
tensors that are a function of the field strength however here it 
is assumed that the region of space under consideration is free 
space comprising a homogeneous isotropic linear dielectric 
medium and thus ε and µ can be approximated by real 
constants.  j is the imaginary unit and ∇0 is the differential 
vector operator expressed in the source co-ordinate system.  



The geometry of this statement of the Kirchhoff-Huygens 
formula can be found illustrated in its conventional form in 
Figure 1 below. 
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Fig. 1:  Geometry of Kirchhoff-Huygens formula, i.e. equation 5, for the 

propagation of electromagnetic fields from Huygens’ surface S, to point P. 
Expanding ∇0ψ obtains [17], 
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Thus, the general vector Kirchhoff-Huygens formula can be 
expressed as [15], 
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These expressions yield the vector electric field function 
from an integral of the electric and magnetic fields over the 
closed surface S where dS is an elemental portion of the that 
surface.  Equivalent expressions can be obtained for the 
magnetic field [16, 17, 18].  These expressions are amenable 
for evaluating the field at any point in space outside of S and 
as such can be used to create near- and far-field simulations 
alike.  Use of these expressions enable commercially available 
full wave three-dimensional CEM simulation tools to be used 
to solve for the fields around some, comparatively small 
tractable, radiating structure whereupon the Kirchhoff–
Huygens’ method can be used to calculate the fields resulting 
from this radiator throughout a much larger problem space.  In 
this way, measurement simulations of great accuracy can be 
produced comparatively simply and easily using essentially 
rigorous, but computationally intensive, near-field solvers. 

Typically when using Equation 5 to compute the far-field 
pattern of an antenna from knowledge of the corresponding 
near-fields, the vector r would be chosen so that the 
evaluation of the integral would produce the antenna diagram 
for a specified angular direction as for example, 
 ( ) ( ) ( ) ( ) ( ) zyx eElAzeEleElAzr ˆcoscosˆsinˆcossinˆ ++=  (6) 

Here, Az and El are the azimuth and elevation angles 
respectively and describe a conventional azimuth over 
elevation spherical positioning system [17, 19].  However, 
when simulating an antenna measurement facility, it is 
perhaps simpler to rotate the AUT, i.e. the closed Huygens’ 
surface, using an isometric rotation and then to evaluate the 
far-fields in a single direction which more closely mimics the 
antenna measurement process and allows chamber scatterer to 
be introduce into the model in a direct way.  In this case, r 
would be held fixed for all measurement angles such that, 
 

zer ˆ1ˆ =  (7) 

Such isometric rotations are easily implemented using 
transformation matrices to rotate the fields and co-ordinates.  
Transformation matrices are matrices that post-multiply a 
column point vector to produce a new column point vector.  A 
series of transformation matrices may be concatenated into a 
single matrix using matrix multiplication.  A transformation 
matrix may represent each of the operations of translation, 
scaling, and rotation.  However, if A is a three by three 
orthogonal, normalised, square matrix, it may be used to 
specify an isometric rotation that can be used to relate two 
frames of reference, i.e. two co-ordinate systems.  Here, an 
isometric rotation is taken to mean a transformation in which 
the distance between any two points on an object remains 
invariant under the transformation.  Any number of angular 
definitions for describing the relationship between the two 
coordinate systems exists.  However, if the angles azimuth 
and elevation are used, where the rotations are applied in this 
order, we may write that a point in one frame of reference can 
be specified in terms of a point in the other frame of reference 
as [17, 19], 
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Here primed co-ordinates are used to denote the rotated 
frame of reference.  In this case, in order that a far-field 
system comprising an azimuth over elevation positioning 
system is utilised then A can be constructed by applying a 
rotation of elevation about the positive x-axis and a negative 
azimuth rotation about the positive y-axis where the rotations 
are applied in this order [17, 19].  Thus, by fixing 

zer ˆ1ˆ =  and 

using Equation 8 to rotate the electric and magnetic fields, the 
position vector r0, and the unit surface normal, the AUT can 
be positioned within the range as though it were installed on a 
conventional azimuth over elevation positioning system.  As a 
central constituent of the MARS measurement process is to 
offset the AUT from the centre of rotation, this can be easily 
incorporated within the simulation by applying an offset to the 
Cartesian components of the position vector that determines 
the location of the radiating Huygens surface.  This translation 
is applied prior to applying the aforementioned rotation.  Once 
evaluated using the Kirchhoff-Huygens method, the resulting 
far-fields can be resolved from the range co-ordinate system 
back onto the antenna co-ordinate system by applying the 
inverse rotation to the far electric (and magnetic) fields where 
the results have been found to be in agreement with those 
produced using conventional processing.  Crucially, when 
introducing a given scatterer into the range simulation, the 
position and orientation of the scatterer is by definition 
specified in the range co-ordinate system and will therefore be 
fixed irrespective of the particular far-field antenna pattern 
angle being computed.  Thus, working in terms of the range 
co-ordinate system as outlined above significantly simplifies 
the computational processing. 

The inclusion of an arbitrarily located and shaped perfectly 
conducting (i.e. worst case) scattering object can be 
introduced by using the Kirchhoff-Huygens field propagation 



method described above together with the generalised law of 
reflection.  By definition, an elemental Huygens source is 
considered to be infinitesimally small and so it will radiate a 
spherical wave.  However, as the observation point on the 
reflecting plate is finitely far removed from the source, i.e. 
more than a few wavelengths away, the reflecting plate will be 
in the far-field of the elemental Huygens source.  Locally 
therefore, at the observation point, the field will be of the form 
of a TEM plane wave propagating in the direction r’.  As the 
field is a local plane wave and assuming that the reflecting 
surface is locally planar and is made from a perfectly 
conducting (PEC) material, the normal electric field 
component will be unchanged upon reflection.  Thus, if a 
homogeneous plane wave is incident on a perfect electrical 
conducting (PEC) flat surface of infinite extent the reflected 
elemental electric field constitutes a similar plane wave and 
the reflected field can be obtained from the incident field 
using [18], 
 ( ) iir EnEnE −⋅= ˆˆ2  (9) 

From the law of reflection, i.e. the angle of incidence 
equals the angle of reflection, that is, 
 ( ) ( )ri unun ˆˆarccosˆˆarccos ⋅=⋅=θ  (10) 

Thus it is possible to write the general statement of 
reflection as [18], 
 ( )nunuu iir ˆˆˆ2ˆˆ ⋅−=  (11) 

Here, iû  denotes the direction of propagation of the 

incident plane wave and rû  represents the direction of 

propagation of the reflected, specular, plane wave.  This can 
be taken to represent the general form of the law of reflection 
with the scattered field being a plane wave as the material is 
assumed to be infinite in extent in the tangential direction and 
the material properties do not vary across this surface.  As the 
reflected elemental electric field correspond to a plane wave 

propagating in the direction rû  the elemental magnetic field 

can be obtained from the elemental electric field using the 
TEM, i.e. plane wave, condition thus [17, 18], 

 dsEu
Z
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Here Z0 is the plane wave impedance, or characteristic 
impedance, of free space where Z0 = cµ0.  The total reflected 
electric and magnetic fields at each point on the surface of the 
reflector can be obtained by summing all of the contributions 
from the infinitely many elemental Huygens sources radiated 
from S.  The far scattered field can again be obtained from 
using the Kirchhoff-Huygens method by integrating over the 
surface of the reflector and thereby evaluating the far scattered 
fields.  The total measured far-field for a particular pattern 
angle can be obtained by taking the linear superposition of the 
direct and scattered fields where, in agreement with theory, 
the remote source antenna is assumed to be an infinitesimal 
Hertzian dipole.  As a quasi-far-field measurement is being 
simulated probe pattern effects are unimportant in this 
analysis providing the range length is sufficiently large to 
insure that the pattern of the far-field range illuminator is 
essentially constant across the AUT during the measurement 

[20].  Thus, by following this process, a simulation of a 
typical MARS type far-field measurement can be created with 
almost complete freedom to choose the AUT, the 
measurement geometry and the location of the scattering 
object in order to test the existing far-field MARS technique.  
Far-field predictions obtained from this simulation technique 
together with results of the far-field MARS processing can be 
found presented within the following sections. 

III.  RESULTS 

In order that the F-MARS measurement and post-
processing technique could be further verified, a far-field 
measurement was simulated that recreated a typical F-MARS 
configuration.  A commercially available three-dimensional 
full wave CEM solver was used to simulate the near-fields 
radiated by a WR90 open-ended rectangular waveguide 
(OEWG) section that was excited by a TE10 mode.  The 
Cartesian components of the electric and magnetic fields were 
obtained at 10 GHz and were specified over the surface of an 
ellipsoid that tightly bounded the radiating aperture.  The 
maximum radial extent of this ellipsoid when displaced from 
the origin was 0.08 m.  The aperture of the OEWG section 
was displaced from the origin of the range measurement co-
ordinate system, i.e. the centre of rotation, by 0.1 m in the 
AUT z-axis which was specified as being at a normal to the 
waveguide aperture plane.  A square reflecting plate of side 
0.3 m by 0.3 m was introduced into the simulation located 
with its centre at x =-0.1 m, y = 0 m, z = 1.0 m with its unit 
normal directed in the positive x-axis and the sides of the plate 
being parallel with the y- and z-axes.  This configuration 
closely mimicked the experimental arrangement that had 
previously been used to verify the F-MARS technique, c.f. [14, 
15].  The physical-optics based simulation was then used to 
obtain the far-electric field great circle azimuth cut with a 
range length of 200 m which placed the AUT in the far-field 
for all of the simulations.  The results of this simulation can be 
found presented in Figure 2 which contains the amplitude 
antenna diagram plotted together with the equivalent ideal far-
field pattern (i.e. the far-field pattern of antenna in the absence 
of the reflecting flat plate).  Figure 3 contains an equivalent 
plot that shows the far-field great circle phase pattern. 
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Fig. 2:  Far-field amplitude pattern of 

OEWG with and without plate.  
AUT offset = 10 cm. 

Fig. 3:  Far-field phase pattern of 
OEWG with and without plate.  AUT 

offset = 10 cm. 
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Fig. 4:  Far-field amplitude pattern of 

OEWG with and without plate.  
AUT offset = 30 cm. 

Fig. 5:  Far-field phase pattern of 
OEWG with and without plate.  AUT 

offset = 30 cm. 

-150 -100 -50 0 50 100 150
-30

-25

-20

-15

-10

-5

0

Az °

P
ow

er
 (

dB
)

 

 

AUT

AUT &  Plate

 
-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150

Az °

P
ha

se
 °

 

 

AUT

AUT &  Plate

 
Fig. 6:  Far-field amplitude pattern of 

OEWG with and without plate.  
AUT offset = 50 cm. 

Fig. 7:  Far-field phase pattern of 
OEWG with and without plate.  AUT 

offset = 50 cm. 
Typically, an antenna is installed within a near-, or far-field 

facility such that it is displaced in space as little as possible 
during the course of a measurement.  As range multi-path 
tends to disturb the fields illuminating the test antenna, the 
purpose of this strategy is to ensure that the field illuminating 
the test antenna changes as little as possible during the course 
of the acquisition, thereby minimising the impact of scatting 
on the measurements.  However, as modelled above, the 
MARS measurement technique deliberately displaces the 
AUT away from the centre of rotation.  This has the effect of 
making the differences in the illuminating field far more 
pronounced than would otherwise be the case, and it is this 
greater differentiation that makes the identification of 
scattered fields and their subsequent removal viable.  In order 
that this effect could be further investigated, the simulation 
was repeated with an AUT offset of 0.3 m and 0.5 m.  The 
results of these simulations can be found presented in Figures 
4 & 5 and Figures 6 & 7 respectively.  It is well known that as 
an antenna is moved away from the centre of rotation of the 
measurement system, in the true far-field, the phase function 
of the AUT changes such that [17], 
 ( ) ( ) rkj

t erErE ⋅∞→=∞→ 0,,,, φθφθ  (13) 

Here, r denotes the displacement vector between the centre 
of the measurement co-ordinate system and the centre of the 
current sources e.g. the aperture of the AUT.  If a 
displacement is made purely in the AUT z-axis this reduces to, 
 ( ) ( ) zjk

t erErE ∆∞→=∞→ θφθφθ cos0,,,,  (14) 

Here ∆z was 0.1, 0.3, 0.5 m respectively for the three 
simulations presented above.  As can be seen from inspection 
of figures 3, 5 and 7 it is clear that a parabolic phase function 
has been introduced onto the far-field patterns.  This feature 
was not introduced explicitly within the simulation and is an 
artefact of the geometry of the simulation and the due regard 
to phase that is inherent within the Kirchhoff-Huygens 
formula. 

The effects of the reflecting plate can be clearly seen on the 
far-field great circle cuts with disturbances evident primarily 

around the 0° < θ < 90° angular region with some scattering 
also being evident on the back lobes of the antenna.  This 
ripple is a result of the direct and indirect (scattered) signals 
adding in and out of phase as the AUT is progressively rotated.  
Clearly, the further the AUT is displaced across the range 
quiet zone during the measurement simulation, the more 
rapidly the signals will beat in and out of phase as the 
difference in the electrical paths becomes larger and the 
higher the angular frequency of the resulting ripple will be 
observed on the measured antenna pattern.  Again, this is in 
agreement with what is generally observed when taking an F-
MARS measurement, c.f. Figures 2, 4, and 6 in [15]. 

It is well known that the electromagnetic fields outside an 
arbitrary test antenna radiating into free space can be 
expanded into a set of orthogonal cylindrical mode 
coefficients (CMC) and that these modes and coefficients can 
then be used to obtain the electric and magnetic fields 
everywhere in space outside of a conceptual cylindrical 
surface which encloses the radiator, i.e. which encloses the 
majority of the current source [7, 8, 9, 14, 15].  The success of 
F-MARS processing is predicated upon the ability to deduce 
these CMCs and, on the characteristics of the distribution of 
those modes once they have been obtained.  Thus in order that 
this could be investigated in detail, far-field antenna pattern 
data was simulated for the AUT with the aperture located at 
several different offsets from the origin of the measurement 
co-ordinate system to illustrate the effect of the offset on the 
equivalent CMC, and thus on the MARS correction itself.  
Figures 8, 10, and 12 show the ideal modelled far-field 
patterns (red trace) plotted together with the scattering 
contaminated far-field equivalent plots (blue trace) and the F-
MARS processed pattern (black trace) for the cases where the 
AUT was displaced by 10 cm, 30 cm, and 50 cm.  Here, it is 
clear that as the displacement becomes larger, the agreement 
between the ideal pattern and the F-MARS processed pattern 
is in increasingly encouraging agreement.  Figures 9, 11, and 
13 contain the equivalent CMC plots with (blue trace) and 
without (red trace) MARS filtering.  It is clear from inspection 
of these plots that the displacement of the spectral peak of the 
scattered fields to increasingly higher order modes with 
increasing AUT offset corresponds to the change in the 
appearance of the measured far-field patterns, c.f. [15].  Note 
that as the offset is increased, the spectral peak representing 
multipath energy tends to move further away (towards higher 
order mode numbers) from the AUT spectral peak (shown in 
the centre of the plot at n = 0).  Also, note that the multipath 
spectrum becomes wider as the offset is increased.  It can be 
seen that in the small 10 cm offset case, the multipath and 
AUT modes are mostly coincident, and thus MARS 
processing provides less immunity to range multipath.  In the 
case where the offset is larger, i.e. 30 cm and 50 cm it is clear 
that MARS provides far great immunity from multipath as the 
CMCs that are associated with field reflected from the 
reflecting plate can now be clearly resolved from the antenna 
coefficients, which are closely distributed about the lowest 
order mode.  Here, MARS processing provides a clear view of 
the AUT pattern throughout the range of angles where range 



multipath had the greatest effect.  These observations are in 
agreement with what has been noted during when taking 
actual range measurements [15]. 
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Fig. 8:  Far-field cut with and 
without MARS processing. 

Displacement of 10 cm. 

Fig. 9:  Equivalent CMCs with AUT 
displacement of 10 cm. 
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Fig. 10:  Far-field cut with and 

without MARS processing. 
Displacement of 30 cm. 

Fig. 11:  Equivalent CMCs with 
AUT displacement of 30 cm. 
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Fig. 12:  Far-field cut with and 

without MARS processing. 
Displacement of 50 cm. 

Fig. 13:  Equivalent CMCs with 
AUT displacement of 50 cm. 

The minimum conceptual maximum radial extent (MRE) 
which is used by the MARS cylindrical mode coefficient filter 
function to exclude scattering from the measurements must be 
sufficiently large to create a conceptual cylinder that is coaxial 
with the rotation axis and which encloses the majority of the 
current sources.  As the AUT was a low gain OEWG 
inspection of the near-field simulation showed that significant 
currents flowed down the exterior surfaces of the waveguide 
walls.  For this reason, this antenna is not a true aperture type 
antenna as the excitation current distribution extends in all 
three Cartesian axes.  These currents contribute to the far-field 
pattern, particularly to the wide angle sidelobes, and therefore 
should not be excluded from the measurement by the F-
MARS processing.  Thus, during this processing a 
conservative radius of 8 cm was employed (which was far 
larger than suggested by the maximum diagonal dimension of 
the aperture which was 2.5 cm) as this retained many more of 
these exterior fields.  Thus far, only rectangular brick-wall 
band-pass filter functions have been used to filter the CMCs 
when applying far-field MARS.  As the exclusion of modes is 
based upon a consideration of the physical (and therefore 
electrical) extent of the source this technique will preserve the 
integrity of the underlying pattern function.  In an attempt to 
minimise the likelihood of introducing transform leakage 
which would result in a spurious ripple being superimposed 

on the F-MARS filtered far-field pattern, since this is a second 
order effect, and as the ideal antenna pattern was known a-
priori from the CEM simulation for the first time, these effects 
could be assessed critically. 
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Fig. 14:  Equivalent CMCs with 

AUT displacement of 30 cm. 
Cosine squared filter applied. 

Fig. 15:  Far-field cut with and 
without MARS processing. 

Displacement of 30 cm. 
As there are an almost infinite number of possible 

windowing functions that could be examined, it was decided 
that merely establishing the effectiveness that this approach 
has in enabling a tighter band-pass filter functions to be 
employed was thought sufficient to justify a more exhaustive 
investigation at a future time.  Figure 14 contains an 
equivalent CMC plot to that shown in Figure 11 only here, a 
cosine squared windowing function has been applied to filter 
out higher order modes whilst attempting to match the 
function and as many of its derivatives to zero at the boundary 
of the transform domain so as to minimise ripple in the 
transformed domain.  As can be seen from inspection of 
Figure 15, the ideal CEM pattern and the F-MARS filtered 
pattern are in very encouraging agreement.  Furthermore, the 
degree of agreement is clearly an improvement over the 
previously the case, c.f. Figure 10, where a rectangular filter 
function had been employed.  This demonstrates the validity 
of this future line of research. 

IV.  SUMMARY AND CONCLUSIONS 

A new physical optics based antenna measurement model 
that can be used to investigate the impact of various error 
terms within the facility level error budget of a given spherical 
near- or far-field range has been introduced.  A traditional 
objection to the implementation of physical optics based 
software modelling tools has been the long run times however 
with the advent of high-CPU-power computers this objection 
has been largely nullified.  This tool has been used to model a 
conventional F-MARS measurement whereupon similar 
phenomena have been observed in the CEM model as are seen 
in actual range measurements.  Specifically these are: 1) 
parabolic phase function is imposed on far field phase pattern 
that is dependent upon displacement of AUT from 
measurement origin, 2) the effects of scattering on a far-field 
pattern depend upon the AUT displacement with greater 
displacement resulting in higher angular frequency ripple on 
the far-field pattern, 3) CMCs resulting from scattering are 
displaced to higher order modes, AUT modes are displaced to 
lower order modes once the AUT is mathematically displaced 
back to the origin of the measurement co-ordinate system, 4) 
the amount of separation between mode distributions 
associated with scattering and those associated with the AUT 
increases as the displacement increases, and 5) F-MARS is 



capable of effectively suppressing scattering providing the 
magnitude of the displacement is sufficiently large. 

Thus, the CEM model has been able to provide further 
confirmation of the effectiveness of the far-field MARS 
technique and hence F-MARS processing can be used with a 
very high degree of confidence since all the steps in the 
measurement and analysis are consistent with the well-
established principles of the standard cylindrical near-field 
theory and measurement technique, and all comparisons to 
date have proved overwhelmingly positive.  The offset of the 
AUT and the resulting smaller data point spacing are valid if 
the data point spacing satisfies the sampling criteria.  The 
translation of the far-field pattern to the origin with the 
application of a differential phase change is rigorous.  The 
selection of the mode cut-off for the translated pattern is based 
on the physical dimensions of the AUT and its translated 
location. 
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